These are the missing descriptions for RSA elements:
n - modulus
e - publicExponent
d - privateExponent
p - prime1
q - prime2
dmp1 - exponent1, d mod (p-1)
dmq1 - exponent2, d mod (q-1)
iqmp - coefficient, (inverse of q) mod p
(PHP 5 >= 5.2.0, PHP 7)
openssl_pkey_get_details — Returns an array with the key details
$key
)This function returns the key details (bits, key, type).
key
Resource holding the key.
Returns an array with the key details in success or FALSE
in failure.
Returned array has indexes bits (number of bits),
key (string representation of the public key) and
type (type of the key which is one of
OPENSSL_KEYTYPE_RSA
,
OPENSSL_KEYTYPE_DSA
,
OPENSSL_KEYTYPE_DH
,
OPENSSL_KEYTYPE_EC
or -1 meaning unknown).
Depending on the key type used, additional details may be returned. Note that some elements may not always be available.
OPENSSL_KEYTYPE_RSA
, an additional array key named "rsa",
containing the key data is returned.
Key | 说明 |
---|---|
"n" | modulus |
"e" | public exponent |
"d" | private exponent |
"p" | prime 1 |
"q" | prime 2 |
"dmp1" | exponent1, d mod (p-1) |
"dmq1" | exponent2, d mod (q-1) |
"iqmp" | coefficient, (inverse of q) mod p |
OPENSSL_KEYTYPE_DSA
, an additional array key named "dsa",
containing the key data is returned.
Key | 说明 |
---|---|
"p" | prime number (public) |
"q" | 160-bit subprime, q | p-1 (public) |
"g" | generator of subgroup (public) |
"priv_key" | private key x |
"pub_key" | public key y = g^x |
OPENSSL_KEYTYPE_DH
, an additional array key named "dh",
containing the key data is returned.
Key | 说明 |
---|---|
"p" | prime number (shared) |
"g" | generator of Z_p (shared) |
"priv_key" | private DH value x |
"pub_key" | public DH value g^x |
OPENSSL_KEYTYPE_EC
, an additional array key named "ec",
containing the key data is returned.
Key | 说明 |
---|---|
"curve_name" | name of curve, see openssl_get_curve_names() |
"curve_oid" | ASN1 Object identifier (OID) for EC curve. |
"x" | x coordinate (public) |
"y" | y coordinate (public) |
"d" | private key |
These are the missing descriptions for RSA elements:
n - modulus
e - publicExponent
d - privateExponent
p - prime1
q - prime2
dmp1 - exponent1, d mod (p-1)
dmq1 - exponent2, d mod (q-1)
iqmp - coefficient, (inverse of q) mod p